An Efficient Synthesis of Cyclic IDP- and Cyclic 8-Bromo-IDP-Carbocyclic-Riboses Using a Modified Hata Condensation Method To Form an Intramolecular Pyrophosphate Linkage as a Key Step. An Entry to a General Method for the Chemical Synthesis of Cyclic ADP-Ribose Analogues ${ }^{\mathbf{1}}$

Masayoshi Fukuoka, Satoshi Shuto,* Noriaki Minakawa, Y oshihito Ueno, and Akira Matsuda
Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, J apan

Received J anuary 21, 2000

Abstract

An efficient synthesis of cydic IDP-carbocyclic-ribose (3) and its 8-bromo derivative 6, as stable mimics of cyclic ADP-ribose, was achieved, and a condensation reaction with phenylthiophosphatetype substrate $\mathbf{1 5}$ or $\mathbf{1 6}$ to form an intramolecular pyrophosphate linkage was a key step. N-1-Carbocyclic-ribosylinosine derivative $\mathbf{2 8}$ and the corresponding 8-bromo congener $\mathbf{2 4}$ were prepared via condensation between N-1-(2,4-dinitropheny))inosine derivative $\mathbf{1 7}$ and a known optically active carbocyclic amine 18. Compounds 24 and 28 were then converted to the corresponding 5 "-phosphoryl-5'-phenylthiophosphate derivatives $\mathbf{1 5}$ and $\mathbf{1 6}$, respectively, which were substrates for the condensation reaction to form an intramolecular pyrophosphate linkage. Treatment of 8 -bromo substrate $\mathbf{1 5}$ with I_{2} or AgNO_{3} in the presence of molecular sieves 3 A (MS 3 A) in pyridine at room temperature gave the desired cydlic product $\mathbf{1 2}$ quantitatively, while the yield was quite low without MS. The similar reaction of 8 -unsubstituted substrate $\mathbf{1 6}$ gave the corresponding cyclized product 32 in 81% yield. Acidic treatment of these cydic pyrophosphates $\mathbf{1 2}$ and 32 readily gave the targets 6 and $\mathbf{3}$, respectively. This result suggests that the construction of $\mathrm{N}-1$-substituted hypoxanthine nucleoside structures from N-1-(2,4-dinitrophenyl)inosine derivatives and the intramolecular condensation by activation of the phenylthiophosphate group with I_{2} or $\mathrm{AgNO}_{3} / \mathrm{MS} 3 \mathrm{~A}$ combine to provide a very efficient route for the synthesis of analogues of cydic ADP-ribose such as $\mathbf{3}$ and $\mathbf{6}$. Thus, this may be an entry to a general method for synthesizing biologically important cyclic nucleotides of this type.

Introduction

Cyclic ADP-ribose (cADPR, 1; Figure 1)² is a newly discovered general mediator involved in Ca^{2+} signaling. ${ }^{3}$ The synthesis of cADPR analogues has been extensively studied by enzymatic and chemoenzymatic methods using ADP-ribosylcyclase, due to their biological importance. ${ }^{4}$ ADP-ribosylcyclase from Aplysia california mediates the intramolecular ribosylation of NAD^{+}and some modified NAD ${ }^{+}$, which are prepared chemically or enzymatically, at theN-1-position of the purine moiety to yield CADPR or the corresponding analogues. ${ }^{4}$ However, the analogues that can be obtained by this method are limited due to the substrate specificity of the enzyme. Furthermore, even though ADP-ribosylcyclase catalyzes the cyclization of NAD^{+}analogues, in some cases the newly formed glycosidic bond is attached to the N-7

[^0]nitrogen of the purine ring: e.g., the product of the enzymatic reaction of an inosine or guanosine analogue of NAD^{+}is not the desired N-1-cyclized product, but rather the N -7-cyclized product. ${ }^{49}$ Accordingly, the development of flexible methods for synthesizing CADPR and a variety of its analogues is needed.

In cells, cADPR is synthesized from NAD ${ }^{+}$by ADPribosylcyclase and acts as a second messenger; it is hydrolyzed promptly by CADPR hydrolase to give ADPribose and inactivated under physiological conditions. ${ }^{3}$ CADPR is also known to be readily hydrolyzed nonenzymatically at the unstable N-1-glycosidic linkage of its

[^1]

Figure 1.
adenine moiety to give ADP-ribose, even in neutral aqueous solution. ${ }^{5}$ Although further intensive studies of CADPR are needed because of its biological importance, this biological as well as chemical instability of cADPR limits studies of its physiological role, at least to some extent. Therefore, stable anal ogues of cADPR that exhibit a Ca^{2+}-mobilizing activity in cells similar to that of cADPR are urgently required.

We designed cyclic ADP-carbocyclic-ribose (2) and its inosine congener 3 (clDP-carbocyclic-ribose) ${ }^{6}$ as stable mimics of cADPR, in which an oxygen atom in the ribose ring of CADPR is replaced by a methylene group. The mimics 2 and 3 should be resistant to both enzymatic and chemical hydrolysis, since they lack the unstable N-1-glycosidic linkage of cADPR. These analogues preserve all of the functional groups of cADPR, except for this ring oxygen, and should have a conformation similar to that of cADPR. Therefore, we expect that these anal ogues would effectively mobilize intracellular Ca^{2+}, like cADPR, so that they could be used as pharmacol ogical tools for studying the mechanism of cADPR-modulated Ca^{2+} signaling pathways. The 8-bromo derivatives of CADP- and cIDP-carbocyclic-riboses (5 and 6, respectively) were also our synthetic targets, since Lee and coworkers found that cyclic 8-bromo-ADPR (4) is an antagonist of cADPR. ${ }^{4 a}$ Therefore, 5 and/or 6 may be a biologically and chemically stable antagonist of CADPR, which would also be very useful in biological studies.

We previously achieved the synthesis of the inosine congener $\mathbf{3 ,}{ }^{6}$ which is the first total synthesis of a cADPR anal ogue. ${ }^{7}$ However, the overall yield was very low, and its biological activity has not been evaluated. In this synthesis, the intramolecular condensation to form the pyrophosphate linkage was a key step, but was very difficult. The difficulty of forming such an intramolecular pyrophosphate linkage, which prevented the completion of the synthesis of target cADPR anal ogues, has al so been experienced by other groups. ${ }^{40,7,8}$ Therefore, the devel opment of an efficient method for forming the intramolecuIar pyrophosphate linkage should be very beneficial.

In this paper, we describe an efficient method for preparing $\mathbf{3}$ and $\mathbf{6}$ using a modified H ata condensation

[^2] 74.
(6) Shuto, S.; Shirato, M.; Sumita, Y.; Ueno, Y.; Matsuda, A. J . Org. Chem. 1998, 52, 1986-1994.
(7) Synthetic approaches to carbocyclic analogues of CADP-ribose have been published by other groups. Although the N -1-carbocyclic inosine and adenosine structures have been constructed, formation of the intramolecular pyrophosphate linkage has not been achieved. (a) Fortt, S.; Potter, B. V. L. Tetrahedron Lett. 1997, 38, 5371-5374. (b) Hutchinson, E.J .; Taylor, B. F.; Blackburn, G. M.J . Chem. Soc., Chem. Commun. 1997, 1859-1860.
(8) Gu, Q.-M.; Sih, C. J. J . Am. Chem. Soc. 1994, 116, 7481-7486.
reaction ${ }^{9}$ with phenylthiophosphate-type substrates to form the intramolecular pyrophosphate linkage as a key step, and this may be an entry to a general synthetic method for CADPR-related compounds. ${ }^{10}$

Results and Discussion

Problems with Our Previous Synthesis of cIDP-Carbocyclic-Ribose. Our previous synthetic route is summarized in Scheme 1. An $\mathrm{S}_{\mathrm{N}} 2$ reaction between the protected 8-bromoinosine derivative 7 and carbocyclic unit 8 provided the 8-bromo-N-1-(carbocyclic-ribosyl)inosine derivative 9 , which was then converted to bisphosphate 11. Intramolecular condensation between the two phosphate groups of bisphosphate 11 was achieved by treating it with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) in N-methylpyrrolidone (NMP), and subsequent reductive debromination and deprotection gave 3. In this synthesis, intramolecular condensation to form the pyrophosphate linkage was the key step, but was very difficult. The two phosphate moieties in the molecule are perhaps separated due to electrostatic repulsion, which would prevent the desired condensation reaction. ${ }^{40,7,8}$ We found that the key intramolecular condensation reaction between the two phosphate groups of $\mathbf{1 1}$ proceeded only when a bromo substituent was introduced at the 8-position of the hypoxanthine ring of the substrate. ${ }^{6}$ It is likely that the molecule is conformationally restricted in a syn-form around its glycosidic linkage due to the 8-bromo substituent, ${ }^{11}$ in which case the two phosphate moieties would be rather close to each other to facilitate the condensation, at least to some extent. ${ }^{6}$ H owever, the yield of the condensation reaction was insufficient (23\%), even when the 8-bromo substrate was used.

Other problems in the previous study were rather long reaction steps, including an enzymatic optical resolution to construct the optically active carbocyclic unit 8 from cyclopentadiene, and inadequate yields in the coupling between inosine unit 7 and carbocyclic unit 8 (44\%).
Thus, the development of both an efficient condensation method for forming the intramolecular pyrophosphate linkage and a more straightforward method for constructing the N-1-carbocyclic structure was needed.

The Synthetic Plan in This Study. The present plan for the synthesis of $\mathbf{3}$ and $\mathbf{6}$ is shown in Scheme 2. Formation of the intramolecular pyrophosphate linkage was investigated by treating 5'-phenylthiophosphates 15 and 16 as substrates with AgNO_{3} or I_{2} as a promoter. The N-1-carbocyclic-ribosyl structure is constructed from N -1-(2,4-dinitrophenyl) inosine derivative 17 and optically active carbocyclic amine 18. Compounds $\mathbf{1 7}$ and $\mathbf{1 8}$ are readily prepared from inosine and commercially available (1R)-(-)-azabicyclo[2.2.1]hept-5-en-3-one. ${ }^{7 b}$
(9) (a) Nakagawa, I.; K ony, S.; Ohtani, S.; Hata, T. Synthesis 1980, 556-557. (b) Sekine, M.; K amimura, T.; Hata, T. J. Chem. Soc., Perkin Trans. 1 1985, 997-1000. (c) Sekine, M.; Nishiyama, S.; Kamimura, T.; Osaki, Y.; Hata, T. Bull. Chem. Soc. J pn. 1985, 58, 850-860. (d) Fukuoka, K.; Suda, F.; Suzuki, R.; Ishikawa, M.; Takaku, H.; Hata, T. Nucleosides Nucleotides 1994, 13, 1557-1567.
(10) A preliminary account of this study has been published previously: Fukuoka, M.; Shuto, S.; Minakawa, N.; Ueno, Y.; Matsuda, A. Tetrahedron Lett. 1999, 40, 5361-5364.
(11) Although a predominance of anti- over syn-conformers is wellknown for natural nucleosides and their analogues, introducing a bulky substituent, such as a bromo group, into the 8 -position of purine nucleosides restricts the conformation in a syn-form, through steric repulsion for the ribose moiety: Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1983.

Scheme 1

Scheme 2

Scheme 3

Hata and co-workers found that the condensation between a phenylthiophosphate and a phosphomonoester was effectively promoted by I_{2} or AgNO_{3} to give the corresponding pyrophosphate compounds, as shown in Scheme 3.9 They successfully synthesized the 5'-cap structure of mRNA using this method. ${ }^{9 d}$ We previously investigated Hata's method to form the intramolecular pyrophosphate linkage with phenylthiophosphate derivative 13 as a substrate in a synthetic study on cIDP-carbocyclic-ribose. ${ }^{12}$ However, when phenylthiophosphate derivative 13, derived from 10, was treated with AgNO_{3} in NMP/HMPA, the desired $\mathbf{1 2}$ was not obtained at all,

[^3]
while a cyclic dimer, 14, was obtained as a major product (Scheme 1). ${ }^{12}$ While it is unclear why such a cyclic dimer was produced, the reaction of 13 with AgNO_{3} would proceed via intermediate \mathbf{A}, in which the $5^{\prime \prime}$-phosphate of the carbocyclic-ribose moiety was activated as a metaphosphate (Figure 2). ${ }^{13}$ In this study, we designed phenylthiophosphate-type substrate 15 (Scheme 2), which is a regioisomer of 13, as another substrate for the intramolecular condensation reaction. A metaphosphate intermediate, B, where the 5'-phosphate of the ribose moiety is activated, should be produced when 15 is treated by a promoter such as_{2} or AgNO_{3}. On the other hand, the condensation reaction of bisphosphate 11 with EDC might proceed via two kinds of intermediates, \mathbf{A}^{\prime} (the 5"-phosphate is activated) and \mathbf{B}^{\prime} (the 5'-phosphate is activated). It is possible that intermediates \mathbf{A} and \mathbf{B}, or \mathbf{A}^{\prime} and \mathbf{B}^{\prime}, respectively, give different reaction products. The reaction of $\mathbf{1 5}$ with AgNO_{3} or I_{2} would make it

[^4]

Figure 2.
clear whether intermediates \mathbf{A} and \mathbf{B} give different products, since intermediate \mathbf{B} should only be produced when it is activated by the promoter. We also presumed that phenylthiophosphates $\mathbf{1 3}$ and $\mathbf{1 5}$ should be superior to bisphosphate 11 as a substrate for forming the intramolecular pyrophosphate linkage, since the electrostatic repulsion described above would be rather decreased in intermediates A and \mathbf{B} due to their metaphosphate structure, compared with that in phosphodiestertype intermediates \mathbf{A}^{\prime} and \mathbf{B}^{\prime}, and the metaphosphatetype intermediates would be much more reactive than the phosphodiester-type intermediates.

We also planned to examine the intramolecular condensation reaction with 8-unsubstituted phenylthiophos-phate-type substrate $\mathbf{1 6}$ (Scheme 2) to investigate whether the 8 -bromo substitution facilitates intramolecular cyclization in the reaction system, which was observed previously when bisphosphate-type substrate 11 was condensed intramolecularly with EDC. ${ }^{6}$

On the other hand, Piccialli and co-workers recently reported an excellent method for preparing N -1-alkylinosines from N-1-(2,4-dinitrophenyl)inosine and alkylamines. ${ }^{14}$ We planned to construct the N-1-carbocyclicribosyl structure from N-1-(2,4-dinitrophenyl)inosine

[^5]derivative $\mathbf{1 7}$ and optically active carbocyclic amine 18 by this procedure.
Synthesis of the cIDP-Carbocyclic-Ribose and Its $\mathbf{8}$-Bromo Congener. The synthesis of $\mathbf{3}$ and $\mathbf{6}$ is summarized in Scheme 4. 2',3'-O-I sopropylidene-5'-O-(monomethoxytrityl)inosine (19) was treated with 2,4-dinitrochlorobenzene and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at $80^{\circ} \mathrm{C}^{14}$ to give N -1(2,4 -dinitrophenyl)inosine derivative $\mathbf{1 7}$ as a mixture of rotamers at the N-1-position ${ }^{14}$ in 90% yield. Heating 17 with 10 equiv of 18, which was prepared by Blackburn's method, ${ }^{7 \mathrm{~b}}$ at $50^{\circ} \mathrm{C}$ in DMF gave thering-cleaved product 20 as a mixture of stereoisomers due to a cis/ trans geometry at the aminomethylene position in 74% yield. ${ }^{15}$ When 1.5 equiv of $\mathbf{1 8}$ was used, the yield of $\mathbf{2 0}$ was decreased (42\%). After the 5"-hydroxyl of 20 was protected with a TBS group, it was treated with N-bromoacetamide (NBA) in THF ${ }^{16}$ to give 2-bromo derivative 22. When 22 was heated in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $50^{\circ} \mathrm{C}$ in DMF , the desired ring-closure product $\mathbf{2 3}$ was obtained in 98% yield. Similar treatment of $\mathbf{2 0}$ also gave 8-unsubstitued inosine derivative $\mathbf{2 8}$ in high yield. Thus, the N-1carbocyclic inosine structure was efficiently constructed from N-1-(2,4-dinitrophenyl)inosine derivative 17 and a readily available optically active carbocyclic amine, 18. This method is clearly superior to our previous method using $\mathrm{S}_{\mathrm{N}} 2$-type condensation between an inosine derivative and an optically active carbocyclic unit.

TheTBS group of $\mathbf{2 3}$ was removed with TBAF in THF, and a di (anilino)phosphoryl group was then introduced at the resulting 5"-primary hydroxyl by treating it with $(\mathrm{PhNH})_{2} \mathrm{POCl}^{17}$ and tetrazole in pyridine ${ }^{18}$ to give $\mathbf{2 5}$ in high yield. After the 5'-O-MMTr group of $\mathbf{2 5}$ was removed with aqueous AcOH , a bis(phenylthio)phosphoryl group was introduced at the primary hydroxyl of the ribose moiety with a cyclohexylammonium S,S-diphenylphosphorodithioate (PSS)/2,4,6-triisopropylbenzenesulfonyl chloride (TPSCI)/tetrazol e/pyridine system ${ }^{19}$ to give protected bisphosphate derivative 27. Successive treatment of $\mathbf{2 7}$ with isoamyl nitrite in a mixed solvent of pyridine-$\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$ in pyridine ${ }^{20}$ gave 15, the substrate for the intramol ecular condensation reaction, in 88% yield as a triethylammonium salt. In a similar manner, the corresponding 8-unsubstituted substrate 16 was synthesized from 28.

The intramolecular condensation reaction of $\mathbf{1 5}$ was investigated under various conditions, and the results are summarized in Table 1. HPLC charts of several reactions are also shown in Figure 3. Reactions were carried out by adding a solution of $\mathbf{1 5}$ slowly over 15 h , using a syringe pump, to a large excess of a promoter at room temperature, and monitored by HPLC. AgNO_{3} or I_{2} and N -methylpyrrolidone (NMP)/hexamethylphosphoramide (HMPA) or pyridine ${ }^{9}$ were used as a promoter and a solvent, respectively. First, 15 was treated with AgNO_{3} in NMP/HMPA to give the desired 12 in only 6% yield, along with cyclic dimer 14 and uncyclized hydrolysis

[^6]
${ }_{\text {g }} C^{29}$ 29: $R^{1}=\mathrm{PO}(N H P h)_{2}, R^{2}=M M T r, X=H$
${ }^{\mathrm{i}} 30: \mathrm{R}^{1}=\mathrm{PO}(\mathrm{NHPh})_{2}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{X}=\mathrm{H}$
${ }^{\text {i }} C$ 31: $\mathrm{R}^{1}=\mathrm{PO}(\mathrm{NHPh})_{2}, \mathrm{R}^{2}=\mathrm{PO}(\mathrm{SPh})_{2}, \mathrm{X}=\mathrm{H}$
${ }^{\text {a }}$ Conditions: (a) 2,4-dinitrochlorobenzene, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}$; (b) $\mathbf{1 8}$, DMF, $50^{\circ} \mathrm{C}$; (c) TBSCI, imidazole, rt; (d) NBA, THF, $-10^{\circ} \mathrm{C}$; (e) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $50^{\circ} \mathrm{C}$; (f) TBAF, THF; (g) (PhNH) 2 POCI, tetrazole, py, rt; (h) aq 80% AcOH, rt; (i) PSS, tetrazole, TPSCI, py, rt; (j) (1) isoamyl nitrite, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{AcOH}, \mathrm{py}$, rt; (2) $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{py}$, rt ; (k) I_{2}, or $\mathrm{AgNO}_{3}, \mathrm{MS} 3 \mathrm{~A}, \mathrm{py}$; (I) $60 \% \mathrm{HCO}_{2} \mathrm{H}$.

Table 1. Intramolecular Condensation Reactions of $\mathbf{1 5}^{\mathbf{a}}$

			products (yield, \%)		
entry	promoter		solvent	$\mathbf{1 2}$	$\mathbf{1 4}$
$\mathbf{1 1}$					
1	AgNO_{3}	NMP/HMPA	6	10	15
2	I_{2}	NMP/HMPA	6	5	29
3	I_{2}	pyridine	34	8	47
4	$\mathrm{I}_{2} / \mathrm{MS} \mathrm{3A}_{3}$	pyridine	100		
5	$\mathrm{AgNO}_{3} / \mathrm{MS} 3 \mathrm{~A}$	pyridine	94		
6	$\mathrm{I}_{2} / \mathrm{MS} \mathrm{3A}_{3}$	NMP/HMPA	49	10	trace
7	$\mathrm{AgNO}_{3} / \mathrm{MS} \mathrm{3A}$	NMP/HMPA	42	6	trace

a To a mixture of AgNO_{3} (30 equiv) or I_{2} (20 equiv) [and MS 3A (500 mg , entries 4-6)] in NMP/HMPA (3:1, 8.0 mL) or pyridine $(8.0 \mathrm{~mL})$ was slowly added a solution of $\mathbf{1 5}(9.4 \mu \mathrm{~mol})$ in the same solvent (8.0 mL) at room temperature over 15 h . ${ }^{\text {b }}$ Entries 4 and 5 , isolated yield; entries 1-3, 6, and 7, determined by HPLC.
product 11 in respective yields of 10% and 15% (entry 1). Compounds 12, 14, and 11 were identified by comparison with the authentic samples synthesized previously. 6,12 Treatment of $\mathbf{1 5}$ with I_{2} instead of AgNO_{3} gave a similar insufficient result (entry 2, Figure 3a). However, when pyridine was used as a solvent, the yield of $\mathbf{1 2}$ was clearly improved (34\%), and hydrolysis product 11 was obtained in 47% yield (entry 3). Therefore, we performed the reaction in the presence of molecular sieves 3A (MS 3A) to remove water from the reaction system. Surprisingly, the reaction with $I_{2} / \mathrm{MS} 3 \mathrm{~A}$ as a promoter gave the desired 12 as a sole product (Figure 3b), which was obtained quantitatively as a triethylammonium salt, after
purification by C_{18} column chromatography (entry 4). A similar reaction with AgNO_{3} instead of I_{2} in the presence of MS 3A in pyridine also gave 12 in very high yield (entry 5). Use of NMP/HMPA as a solvent clearly decreased the yield of 12, and the cyclic dimer $\mathbf{1 4}$ was formed (entries 6 and 7, Figure 3c).

We next examined the use of 8-unsubstituted substrate 16 in the intramolecular condensation reaction to investigate whether the 8 -bromo substituent at the purine moiety facilitates intramolecular condensation to form a pyrophosphate linkage. Thus, $\mathbf{1 6}$ was treated under the same conditions as in entry 4 to give the desired cyclization product 32 in 81% isolated yield. An HPLC chart for the reaction is shown in Figure 3d. An increase of byproducts was observed by HPLC in the reaction of 8-unsubstitued 16 compared with that with 8 -bromo substrate 15 (Figure 3b). These results suggest that the 8-bromo group facilitates the intramolecular condensation reaction to some extent, due to conformational restriction of the substrate in a syn-form around its glycosyl linkage.

The intramolecular condensation reaction of $\mathbf{1 3}$, which is the regioisomeric substrate of $\mathbf{1 5}$, was also examined. Compound $\mathbf{1 3}$ was readily prepared from $\mathbf{2 4}$ (Scheme 5). Treatment of $\mathbf{1 3}$ under the best conditions (Table 1, entry 4) gave the desired cyclized product $\mathbf{1 2}$ in 99% isolated yield. This clearly shows that both metaphosphate intermediates, i.e., 5"'phosphate-activated A and 5'-

Figure 3. HPLC analysis at 254 nm of the intramolecular condensation reactions of $\mathbf{1 5}$ (a, b, and c) and 16 (d) at 15 h : (a) reaction with 15, entry 2 in Table 1; (b) reaction with 15, entry 4 in Table 1; (c) reaction with 15, entry 6 in Table 1; (d) reaction with 16, the same conditions as in entry 4 in Table 1.

Scheme 5a

a 24: $R^{1}=H, R^{2}=M M T r$
b ${ }^{33}: \mathrm{R}^{1}=\mathrm{PO}(\mathrm{SPh})_{2}, \mathrm{R}^{2}=\mathrm{MMTr}$
b 34: $\mathrm{R}^{1}=\mathrm{PO}(\mathrm{SPh})_{2}, \mathrm{R}^{2}=\mathrm{H}$
c C_{35} : $\mathrm{R}^{1}=\mathrm{PO}(\mathrm{SPh})_{2}, \mathrm{R}^{2}=\mathrm{PO}(\mathrm{NHPh})_{2}$
a Conditions: (a) PSS, tetrazole, TPSCI, py, rt; (b) aq 80\% AcOH, rt; (c) (PhNH) $)_{2} \mathrm{POCl}$, tetrazole, py, rt; (d) (1) isoamyl nitrite, $\mathrm{Ac}_{2} \mathrm{O}$, $\mathrm{AcOH}, \mathrm{py}, \mathrm{rt}$; (2) $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, py, rt; (3) aq NaHCO_{3}; (e) I 2 , MS 3A, py rt.
phosphate-activated B, readily cyclized to form $\mathbf{1 2}$ in high yield under these conditions.

It has been demonstrated that phenylthiophosphatetype substrates are very effective for a condensation reaction to form the intramolecular pyrophosphate linkage. This may be because the electrostatic repulsion between the two phosphate groups in the metaphosphate intermediates \mathbf{A} and \mathbf{B} is relatively decreased, as we expected. It may also be possible that the reactive

Scheme 6

b)

intermediate is a pyridinium adduct which promotes the intramolecular cyclization via salt formation with the phosphate anion, since the use of pyridine as a solvent was key to the success of the intramolecular condensation. An attempt to prepare CADPR or its analogues by chemical intramolecular condensation was first reported by Gu and Sih. ${ }^{8}$ They investigated condensation between the two phosphate groups of N -1-phosphoribosyl-AMP (36) with EDC, but were unsuccessful (yield $<1 \%$, Scheme 6a). ${ }^{8}$ Later, ring closure of bisphosphate 37 through the formation of a pyrophosphate linkage was examined by Fortt and Potter, but they also failed. ${ }^{7 a}$ We
have also experienced the difficulty of conducting such an intramolecular condensation to prepare carbocyclic cADPR analogues. ${ }^{6}$ Accordingly, our finding in this study with phenylthiophosphate-type substrates, i.e., that an I_{2} or $\mathrm{AgNO}_{3} / \mathrm{MS} 3 \mathrm{~A}$ system very efficiently promotes the intramolecular condensation reaction between the phenylthiophosphate and phosphate groups to provide the desired cyclic pyrophosphate product in very high yield, is very important.

The cyclic pyrophosphates 32 and $\mathbf{1 2}$ were treated with aqueous $\mathrm{HCO}_{2} \mathrm{H}$ at room temperature to give the targets clDP-carbocyclic-ribose (3) and cyclic 8-bromo-IDP-car-bocyclic-ribose (6), respectively.

Finally, we investigated whether the synthesized cIDP-carbocyclic-ribose (3) is stable in aqueous solution, as we hypothesized. When $\mathbf{3}$ was treated in 10 mM triethylammonium acetate buffer (pH 7.0) at $37^{\circ} \mathrm{C}$, none of its hydrolysis was observed by HPLC analysis after 3 days, whereas CADPR (1) was clearly hydrolyzed ($\mathrm{t}_{1 / 2}=60.5$ h) under the same conditions.

Conclusion. We have developed a very efficient method for synthesizing cyclicIDP-carbocyclic-ribose and its 8-bromo derivative. The N-1-carbocyclic inosine structure was efficiently constructed from N-1-(2,4-dinitrophenyl)inosine derivative $\mathbf{1 7}$ and a readily available optically active carbocyclic amine, 18. The key intramolecular cyclization reaction of the phenylthiophosphatetype substrates 13, 15, and 16 proceeded with I_{2} or $\mathrm{AgNO}_{3} / \mathrm{MS} 3 \mathrm{~A}$ to give the products in very high yields. These results suggest that the construction of $\mathrm{N}-1-$ substituted inosine structures from N-1-(2,4-dinitrophenyl)inosine derivatives and the intramolecular condensation through the activation of a phenylthiophosphate group with I_{2} or $\mathrm{AgNO}_{3} / \mathrm{MS} 3 \mathrm{~A}$ combined to provide a very efficient route for synthesizing analogues of cyclic ADP-ribose, such as $\mathbf{3}$ and 6. This method may be applicable to the synthesis of CADPR analogues with an adenine base, including $\mathbf{2}$. Thus, this may be an entry to a general method for synthesizing biologically important cyclic nucleotides of this type.

Experimental Section

Chemical shifts are reported in parts per million downfield from TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) or $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{(31} \mathrm{P}\right)$, and J values are given in hertz. The ${ }^{1} \mathrm{H}$ NMR assignments described are in agreement with COSY spectra. Thin-layer chromatography was done on Merck coated plate $60 \mathrm{~F}_{254}$. Silica gel chromatography was done on Merck silica gel 5715 . Reactions were carried out under an argon atmosphere.

5'-O-(Monomethoxytrityl)-2', $\mathbf{3}^{\prime}$-O-isopropylideneinosine (19). A mixture of $2^{\prime}, 3^{\prime}-0-i$ isopropylideneinosine (12.9 g , 41.8 mmol) and M MTrCl ($15.5 \mathrm{~g}, 50.2 \mathrm{mmol}$) in pyridine (400 mL) was stirred at room temperature for 40 h . After MeOH (10 mL) was added, the resulting solution was stirred at room temperature for 30 min and evaporated. The residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with brine (200 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 4 \% \mathrm{MeOH}$ in CHCl_{3}) to give 19 (24.3 g , quant) as white solids: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 13.19$ (br s, 1 H), 8.12 (s, $1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.37-6.76(\mathrm{~m}, 14 \mathrm{H}), 6.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1)$, 5.35 (dd, $1 \mathrm{H}, \mathrm{J}=2.1,6.2$), $4.94(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7,6.2), 4.53$ (ddd, $1 \mathrm{H}, \mathrm{J}=2.7,4.4,6.1$), 3.75 (s, 3 H), 3.35 (dd, $1 \mathrm{H}, \mathrm{J}=$ $6.1,10.2$), 3.27 (dd, $1 \mathrm{H}, \mathrm{J}=4.4,10.2$), 1.63, 1.39 (each s , each $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.2,158.6,148.2,145.1$, 143.9, 143.8, 139.3, 135.0, 130.2, 129.2, 128.3, 127.8, 127.8, 127.1, 127.0, 125.4, 114.3, 113.2, 113.1, 91.3, 86.7, 86.5, 84.5,
81.9, 63.9, 55.2, 27.1, 25.4, 25.2; HRMS (FAB, positive) calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{6} 581.2400\left(\mathrm{MH}^{+}\right)$, found 581.2396 ; UV (MeOH) $\lambda_{\text {max }} 251$, sh 259 nm . Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 67.74; H, 5.60; N, 9.57. Found C, 67.56; H, 5.64; N, 9.86.

N-1-(2,4-Dinitrophenyl)-5'-O-(monomethoxytrityl)-2, $\mathbf{3}^{\prime \prime}$ O-isopropylideneinosine (17). A mixture of 19 ($11.5 \mathrm{~g}, 19.7$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(6.8 \mathrm{~g}, 49.3 \mathrm{mmol})$, and 2,4-dinitrochlorobenzene $(10.0 \mathrm{~g}, 49.3 \mathrm{mmol})$ was stirred in DMF $(200 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 2.5 h . After the mixture was cool ed to room temperature, the insoluble materials werefiltered and washed with EtOAc. The filtrates and washings were combined and evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, 60% EtOAc in hexane) to give a rotameric mixture of 17 (13.2 g, 90\%) as brown solids: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 9.03$, 9.01 (each d, each $0.5 \mathrm{H}, \mathrm{J}=2.6) 8.64(\mathrm{dd}, 0.5 \mathrm{H}, \mathrm{J}=2.6,8.6)$, 8.61 (dd, $0.5 \mathrm{H}, \mathrm{J}=2.6,8.6$), $7.95,7.94$ (each s, each 0.5 H), 7.89, 7.81 (each s, each 0.5 H), 7.67 ($\mathrm{d}, 0.5 \mathrm{H}, \mathrm{J}=8.6$), 7.49 (d , $0.5 \mathrm{H}, \mathrm{J}=8.6$), $7.41-6.75(\mathrm{~m}, 14 \mathrm{H}), 6.14(\mathrm{~d}, 0.5 \mathrm{H}, \mathrm{J}=2.6)$, 6.13 (d, $0.5 \mathrm{H}, \mathrm{J}=2.6$), 5.34 (dd, $0.5 \mathrm{H}, \mathrm{J}=2.6,6.6$), 5.25 (dd, $0.5 \mathrm{H}, \mathrm{J}=2.6,5.9$), 4.97 (dd, $0.5 \mathrm{H}, \mathrm{J}=3.3,6.6$), 4.93 (dd, 0.5 $H, J=2.6,5.9), 4.51(\mathrm{~m}, 1 \mathrm{H}), 3.75,3.75$ (each s , each 1.5 H), 3.44-3.32 (m, 2 H), 1.64, 1.41 (each s, each 3 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 158.5,158.5,155.0,154.9,147.9,146.8$, 154.1, 144.9, 143.9, 143.7, 139.7, 135.3, 134.9,131.8, 131.7, $130.3,130.2,128.8,128.7,128.2,128.1,127.8,127.7,126.9,124.6$, $121.0,120.9,114.5,114.5,113.1,113.0,91.1,91.0,86.8,86.6$, 86.1, 85.9, 84.7, 84.5, 81.4, 81.4, 77.3, 77.0, 76.7, 63.8, 63.5, 55.1, 27.1, 27.1, 25.3, 25.3; HRMS (FAB, positive) calcd for $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{10} 747.2414\left(\mathrm{MH}^{+}\right)$, found 747.2401 ; UV (MeOH) $\lambda_{\text {max }}$ 264, 253 nm . Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{10} 0^{1 / 2} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.98$; H, 4.67; N, 11.12. Found C, 62.23; H, 4.75; N, 10.77.

5-[[(1R,2S,3R,4R)-2,3-(Isopropyridenedioxy)-4-(hydroxy-methyl)cyclopentyl]aminomethyleneamino]-1-[5-0-(monomethoxytrityl)-2,3-0-(isopropylidene)- β-D-ribofu-ranosyl]imidazole-4-(N-2,4-dinitrophenyl)carboxamide (20). A mixture of $\mathbf{1 7}$ ($560 \mathrm{mg}, 0.75 \mathrm{mmol}$) and the optically active carbocyclic amine $\mathbf{1 8}$ ($1.40 \mathrm{~g}, 7.5 \mathrm{mmol}$) in DMF (1.5 mL) was stirred at $50^{\circ} \mathrm{C}$ for 21 h . The mixture was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated, and the residue was coevaporated with toluene ($4.0 \mathrm{~mL} \times 3$) to give the carbocyclic amine 18 ($1.22 \mathrm{~g}, 87 \%$), which can be used repeatedly. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, 60% EtOAc in hexane) to give a cis/ trans mixture of $\mathbf{2 0}$ (520 $\mathrm{mg}, 74 \%$) as an orange foam: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 12.24 (s, 1 H), 9.14-9.11 (m, 2 H,), 8.72 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=3.8$), 8.34 (m, 1 H), 7.42-6.82 (m, 15 H), 6.87 (m, 1 H), 7.37 (s, 1 H), 6.02 (d, 0.8 H$), 5.90(\mathrm{~m}, 0.2 \mathrm{H}), 5.08(\mathrm{dd}, 0.8 \mathrm{H}, \mathrm{J}=2.5,6.0)$, 4.98 (m, 0.2 H), 4.77 (dd, $1 \mathrm{H}, \mathrm{J}=3.1,6.0$), 4.61 ($\mathrm{m}, 2 \mathrm{H}$), 4.51 ($\mathrm{m}, 1 \mathrm{H}$), 4.40 (ddd, $1 \mathrm{H}, \mathrm{J}=3.1,3.6,6.0$), 3.85 (dd, $1 \mathrm{H}, \mathrm{J}=$ $2.8,10.0$), 3.77 (s, 3 H), 3.68 (dd, $1 \mathrm{H}, \mathrm{J}=2.8,10.0$), 3.37 (dd, $1 \mathrm{H}, \mathrm{J}=6.0,10.2$), $3.33(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,10.2), 2.52(\mathrm{~m}, 1 \mathrm{H})$, 2.37 (m, 1 H), 1.60, 1.45, 1.35, 1.28 (each s, each 3 H), 1.51 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 162.6, 158.6, 155.1, 147.7, 143.9, 141.0, 140.4, 135.1, 134.7, 130.9, 130.3, 129.3, 128.3, 127.9, 127.9, 127.0, 122.3, 121.5, 118.7, 114.2, 113.2, $110.6,90.6,87.0,86.8,85.2,84.9,84.0,81.3,64.4,64.1,55.9$, 55.2, 47.0, 32.9, 27.2, 26.9, 25.5, 24.4, 11.4; HRMS (FAB, positive) calcd for $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{7} \mathrm{O}_{13} 934.3623$ (MH^{+}), found 934.3615 ; UV (MeOH) $\lambda_{\text {max }} 270$, sh 286 nm . Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{51} \mathrm{~N}_{7} \mathrm{O}_{13}{ }^{\circ}$ $1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.14 ; \mathrm{H}, 5.56 ; \mathrm{N}, 10.40$. Found C, 61.39; H, 5.78; N, 10.10.

5-[[(1R ,2S,3R ,4R)-2,3-(I sopropylidenedioxy)-4-[[(tert-butyldimethylsilyl)oxy]methyl]cyclopentyl]aminomethyl-eneamino]-1-[5-0-(monomethoxytrityl)-2,3-0-(isopropyl-idene)- β-d-ribofuranosyl]imidazole-4-(N-2,4-dinitrophenyl)carboxamide (21). A mixture of $\mathbf{2 0}(520 \mathrm{mg}, 0.56$ mmol), imidazole ($114 \mathrm{mg}, 1.67 \mathrm{mmol}$), and TBSCI (126 mg , $0.84 \mathrm{mmol})$ in DMF (2.8 mL) was stirred at room temperature for 30 min . After $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added, the solution was stirred at room temperature for 10 min and evaporated. The
residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc}$ in hexane) to give a cis/ trans mixture of $\mathbf{2 1}$ ($508 \mathrm{mg}, 87 \%$) as an or ange foam: ${ }^{1} \mathrm{H}$ NMR ($\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 12.28(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{~m}, 0.2 \mathrm{H}), 9.23(\mathrm{~d}, 0.8 \mathrm{H}, \mathrm{J}=9.5)$, $9.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.5), 8.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0) 8.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 2.5, 9.5), $7.43-6.82(\mathrm{~m}, 14 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.68$ (dd, $1 \mathrm{H}, \mathrm{J}=$ $4.0,7.8$), 6.03 (d, $0.8 \mathrm{H}, \mathrm{J}=2.9$), $6.02(\mathrm{~m}, 0.2 \mathrm{H}), 5.08$ (dd, 0.8 $\mathrm{H}, \mathrm{J}=2.9,6.3), 4.87(\mathrm{~m}, 0.2 \mathrm{H}), 4.76(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.2,6.3)$, $4.61(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.41$ (ddd, 0.8 H , $\mathrm{J}=3.2,3.7,6.0), 4.32(\mathrm{~m}, 0.2 \mathrm{H}), 3.87(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.7,10.2)$, $3.77(\mathrm{~s}, 0.6 \mathrm{H}), 3.77(\mathrm{~s}, 2.4 \mathrm{H}), 3.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.8,10.2)$, 3.38 (dd, $1 \mathrm{H}, \mathrm{J}=6.0,10.2$), 3.32 (dd, $1 \mathrm{H}, \mathrm{J}=3.7,10.2$), 2.55 ($\mathrm{m}, 1 \mathrm{H}$) , 2.37 (m, 1 H), 1.60, 1.44, 1.35, 1.27 (each s , each 3 H), $1.54(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3$, 125 MHz) $\delta 162.5,158.7,155.0,147.6,144.0,143.9,141.3$, $140.4,135.1,134.7,130.9,130.4,129.4,128.4,127.9,127.9$, 127.0, 122.3, 121.5, 118.9, 114.2, 113.2, 110.6, 90.6, 86.8, 86.8, 85.2, 85.0, 83.7, 81.4, 65.5, 64.1, 55.7, 55.2, 47.7, 33.0, 27.2, 27.0, 26.1, 26.1, 25.5, 24.6, 18.5, 14.2, -5.3, -5.4, -5.5 ; HRMS (FAB, positive) calcd for $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{~N}_{7} \mathrm{O}_{13} \mathrm{NaSi} 1070.4307$ (MNa+), found 1070.4330; UV (MeOH) $\lambda_{\text {max }}$ 271, sh 286 nm . Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{~N}_{7} \mathrm{O}_{13} \mathrm{Si}$: C, $61.87 ; \mathrm{H}, 6.25 ; \mathrm{N}, 9.35$. Found C, 61.68; H, 6.35; N, 9.35.

2-Bromo-5-[[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(tert-butyldimethylsilyl)oxy]methyl]cyclopentyl]-aminomethyleneamino]-1-[5-0-(monomethoxytrityl)-2,3-O-(isopropylidene)- β-d-ribofuranosyl]imidazole-4-(N-2,4dinitrophenyl)carboxamide (22). To a solution of 21 (1.23 $\mathrm{g}, 1.17 \mathrm{mmol}$) in THF (6.0 mL) was added NBA ($194 \mathrm{mg}, 1.36$ mmol) in THF (6.0 mL) at $-10^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . The resulting mixture was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 20 \%$ EtOAc in hexane) to give a cis/ trans mixture of $22(1.16 \mathrm{~g}, 88 \%)$ as an orange foam: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 12.15(\mathrm{~s}, 0.8 \mathrm{H})$, $12.14(\mathrm{~s}, 0.2 \mathrm{H})$, 9.22-9.16 (m, 2 H), 8.40 (dd, $1 \mathrm{H}, \mathrm{J}=2.7,9.5$), 8.36 (d, 1 H , $\mathrm{J}=4.1) 7.42-6.75(\mathrm{~m}, 14 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, 0.2 \mathrm{H}$, $\jmath=2.5), 6.14(\mathrm{~d}, 0.8 \mathrm{H}, \mathrm{J}=2.6), 5.54(\mathrm{dd}, 0.8 \mathrm{H}, \mathrm{J}=2.6,6.8)$, 5.22 (dd, $0.2 \mathrm{H}, \mathrm{J}=2.5,6.8), 4.83$ (dd, $0.8 \mathrm{H}, \mathrm{J}=4.5,6.8$), $4.72(\mathrm{~m}, 0.2 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.34$ (ddd, 0.8 H , $\mathrm{J}=3.7,4.5,8.7), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 0.2 \mathrm{H}), 3.85(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=3.4,10.3$), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.8,10.3), 3.47$ (dd, $1 \mathrm{H}, \mathrm{J}=8.7,9.9$), 3.17 (dd, $1 \mathrm{H}, \mathrm{J}=3.7,9.9$), 2.44 (m, 1 H), 2.37 (m, 1 H), 1.59, 1.39, 1.34, 1.24 (each s, each 3 H), 1.41 $(\mathrm{m}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125$ MHz) δ 161.5, 158.5, 155.2, 150.0, 144.2, 144.2, 141.0, 140.6, 135.4, 134.8, 130.3, 129.4, 128.5, 128.4, 127.7, 127.7, 127.0, $126.8,126.8,122.3,121.6,119.5,114.5,113.1,110.5,91.3,87.0$, 86.4, 85.8, 84.1, 82.7, 81.6, 65.7, 64.8, 56.1, 55.1, 47.8, 32.7, 27.1, 26.9, 26.1, 25.3, 24.4, 18.5, 14.2, -5.4; HRMS (FAB, positive) calcd for $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{BrN}_{7} \mathrm{O}_{13} \mathrm{NaSi} 1148.3413$ (MNa^{+}), found 1148.3400; UV (MeOH) $\lambda_{\text {max }}$ 269, sh 285 nm . Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{BrN} \mathrm{N}_{7} \mathrm{O}_{13} \mathrm{Si}$: C, $57.54 ; \mathrm{H}, 5.72 ; \mathrm{N}, 8.70$. Found C, 57.53; H, 5.84; N, 8.93.

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(tert-butyldimethylsilyl)oxy]methyl]cyclopentyl]-5'-O-(monomethoxytrityl)-2,3 3 -0-isopropylideneinosine (23). A mixture of $22(1.16 \mathrm{~g}, 1.03 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(356 \mathrm{mg}, 2.6$ $\mathrm{mmol})$ in DMF (10 mL) was stirred at $50^{\circ} \mathrm{C}$ for 2.5 h . The mixture was evaporated, and the residue was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc}\right.$ in hexane) to give $\mathbf{2 3}$ ($953 \mathrm{mg}, 98 \%$) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.38-6.74(\mathrm{~m}, 14 \mathrm{H}$, Ar-H), 6.17 (d, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}=1.8\right), 5.46\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-\mathrm{L}^{\prime}, \mathrm{J}=1.8\right.$, 6.4), 5.02 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}=3.7,6.4$), 4.87 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{J}=$ 4.9, 6.5), 4.61-4.59 (m, 2 H, H-1", H-3"), 4.46 (ddd, 1 H, H-4', $\mathrm{J}=3.7,4.8,7.1$), 3.82 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}, \mathrm{J}=3.3,10.0$), 3.78 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.72 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}, \mathrm{J}=5.4,10.0$), 3.31 (dd, 1 H , H-5'a, J = 7.1, 9.8), 3.23 (dd, 1 H, H-5'b, J = 4.8, 9.8), 2.31-
2.27 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$), 1.62, 1.54, 1.37, 1.28 (each s , each $3 \mathrm{H}, \mathrm{i}-\mathrm{PrMe}$), 0.91 (s, $9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}$), 0.08 (s, $6 \mathrm{H}, \mathrm{SiMe}$); NOE ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) irradiated $\mathrm{H}-2$, observed $\mathrm{H}-1^{\prime \prime}(9.7 \%)$, $\mathrm{H}-2^{\prime \prime}$ (4.5\%); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,125 \mathrm{MHz}\right) \delta 158.5,155.1,147.5,146.2$, $144.3,143.9,135.3,130.3,128.5,128.3,127.6,126.9,126.8$, 126.1, 125.5, 114.4, 113.1, 113.0, 91.4, 87.0, 86.3, 83.5, 82.9, 82.1, 81.0, 77.3, 77.0, 76.7, 65.0, 64.0, 63.7, 55.2, 46.7, 33.3, 31.9, 29.7, 29.6, 29.3, 29.3, 27.7, 27.2, 25.9, 25.4, 25.3, 22.6, 18.3, -5.4; HRMS (FAB, positive) calcd for $\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{BrN}_{4} \mathrm{NaO}_{9} \mathrm{Si}$ $965.3133\left(\mathrm{MNa}^{+}\right)$, found 965.3119 ; UV (MeOH) $\lambda_{\max } 258,252$, sh 271 nm .

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-(hydroxymethyl)cyclopentyl]-5'-O-(monomethoxytrityl)$\mathbf{2}^{\mathbf{2}}, \mathbf{3}$-O-isopropylideneinosine (24). A mixture of $\mathbf{2 3} \mathbf{(9 4 4 ~ m g , ~}$ 1.0 mmol) and TBAF (1.0 M in THF, $3.4 \mathrm{~mL}, 3.4 \mathrm{mmol}$) in THF (3.4 mL) was stirred at room temperature for 1.5 h . The resulting solution was evaporated, and the residue was purified by col umn chromatography ($\mathrm{SiO}_{2}, 70 \% \mathrm{EtOAc}$ in hexane) to give $\mathbf{2 4}(748 \mathrm{mg}, 90 \%)$ as a yellow foam: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}) \delta 7.54$ (s, $1 \mathrm{H}, \mathrm{H}-2$), $7.38-6.73$ (m, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.17 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}=1.6$), 5.46 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=1.6,6.2$), 5.03 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}=3.6,6.2$), $4.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 4.71(\mathrm{~m}, 1 \mathrm{H}$, H-3"), 4.47 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), 4.45 (ddd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{J}=3.6,4.9$, 7.0), 3.82 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.31 (dd, 1 H , H-5'a, J = 7.0, 9.8), 3.25 (dd, $1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime} \mathrm{b}, \mathrm{J}=4.9,9.8$), $2.40-$ 2.29 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$), 1.62, 1.55, 1.37, 1.29 (each s, each 3 H , i-PrMe); NOE ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) irradiated $\mathrm{H}-2$, observed $\mathrm{H}-1^{\prime \prime}(10.4 \%), \mathrm{H}-2^{\prime \prime}(1.7 \%) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 158.5$, 155.2, 147.7, 146.4, 144.3, 144.0, 135.3, 130.3, 128.4, 127.6, 126.9, 126.4, 125.6, 114.4, 113.1, 113.0, 91.4, 86.9, 86.3, 83.4, 83.2, 82.0, 77.3, 77.0, 76.7, 66.4, 64.1, 63.9, 55.3, 46.6, 32.4, 27.7, 27.2, 25.4, 25.2, 11.4 ; HRMS (FAB, positive) cal cd for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{BrN}_{4} \mathrm{NaO}_{9} 851.2268\left(\mathrm{MNa}^{+}\right)$, found 851.2236; UV (MeOH) $\lambda_{\text {max }} 261 \mathrm{~nm}$.

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(dianilinophosphoryl)oxy]methyl]cyclopentyl]-5'-0-(monomethoxytrityl)-2,3'0-i sopropylideneinosine (25). A mixture of 24 ($166 \mathrm{mg}, 200 \mu \mathrm{~mol}$), tetrazole ($56 \mathrm{mg}, 800$ $\mu \mathrm{mol}$), and dianilinophosphorochloridate ($213 \mathrm{mg}, 800 \mu \mathrm{~mol}$) in pyridine (2.0 mL) was stirred at room temperature for 47 h. Aqueous sodium acetate ($2 \mathrm{M}, 3.0 \mathrm{~mL}$) was added, and the resulting sol ution was stirred at room temperature for 1.0 h . Water and CHCl_{3} were added, and the resulting mixture was partitioned. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 15 \%$ acetone in CHCl_{3}) to give $\mathbf{2 5}$ (209 $\mathrm{mg}, 98 \%$) as a yellow foam: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.46$ (s, 1 H), $7.37-6.73$ (m, 24 H), 6.17 (d, 1 H, J $=2.1$), 6.02, 5.90 (each br s, each 1 H), 5.45 (dd, $1 \mathrm{H}, \mathrm{J}=2.1,6.4$), 5.03 (dd, 1 $\mathrm{H}, \mathrm{J}=3.7,6.4), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.45$ (ddd, 1 H , $\mathrm{J}=3.7,5.0,6.8), 4.37-4.28(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=6.8,9.9$), 3.23 (dd, $1 \mathrm{H}, \mathrm{J}=5.0,9.9$), 2.53-2.24 (m, 3 H), 1.62, 1.53, 1.37, 1.25 (each s, each 3 H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}$, 100 MHz) $\delta 158.2,155.0,147.6,146.3,144.1,143.8,139.4$, 135.2, 130.2, 129.0, 128.2, 128.2, 127.7, 127.5, 127.0, 126.7, $126.3,125.5,121.7,121.6,117.9,117.8,114.3,113.1,113.0$, 112.8, 91.3, 86.8, 86.2, 83.4, 82.8, 81.9, 81.8, 66.5, 66.1, 63.8, 55.2, 45.4, 45.3, 31.9, 29.2, 27.7, 27.2, 25.4, 25.2; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 2.41$ (s); HRMS (FAB, positive) calcd for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{BrN}_{6} \mathrm{NaO}_{10} \mathrm{P} 1081.2877$ (MNa^{+}), found 1081.2840; UV (MeOH) $\lambda_{\text {max }} 267,262,233 \mathrm{~nm}$. Anal. Cal cd for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{BrN}_{6} \mathrm{O}_{10} \mathrm{P} \cdot 1 / 5 \mathrm{CHCl}_{3}: \mathrm{C}, 60.06 ; \mathrm{H}, 5.23 ; \mathrm{N}, 7.75$. Found C, 60.10; H, 5.35; N, 7.69.

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(dianilinophosphoryl)oxy]methyl]cyclopentyl]-2',3'-O-isopropylideneinosine (26). A solution of $\mathbf{2 5}$ (376 mg , 355 $\mu \mathrm{mol}$) in 80% aqueous AcOH (10 mL) was stirred at room temperature for 3 h . The resulting mixture was evaporated, and the residue was purified by col umn chromatography $\left(\mathrm{SiO}_{2}\right.$, $3 \% \mathrm{MeOH}$ in CHCl_{3}) to give 26 ($225 \mathrm{mg}, 80 \%$) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.22-6.87$ $(\mathrm{m}, 10 \mathrm{H}), 6.13(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.6), 6.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.3), 6.00(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8.6$), 5.16 (dd, $1 \mathrm{H}, \mathrm{J}=5.3,5.9$), 5.04 (dd, $1 \mathrm{H}, \mathrm{J}=$ $1.6,5.9), 5.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.3,6.6), 4.93(\mathrm{br}, 1 \mathrm{H}), 4.78$ (dd, $1 \mathrm{H}, \mathrm{J}=2.0,6.6), 4.57(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=4.3,5.3,5.9), 4.47(\mathrm{~m}, 1$

H,), 4.39-4.22 (m, 2 H), 3.96-3.74 (m, 2 H), 2.54-2.24 (m, 3 H), 1.67, 1.52, 1.39, 1.25 (each s, each 3 H); ${ }^{31 \mathrm{P}}$ NMR (CDCl_{3}, 125 MHz , decoupled with ${ }^{1} \mathrm{H}$) $\delta 2.62$ (s); HRMS (FAB, positive) calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{BrN}_{6} \mathrm{NaO}_{9} \mathrm{P} 809.1676$ (MNa^{+}), found 809.1646; UV $(\mathrm{MeOH}) \lambda_{\text {max }} 257,233$, sh 273 nm .

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(dianilinophosphoryl)oxy]methyl]cyclopentyl]-5'-0 [bis(phenylthio)phosphoryl]-2 , $\mathbf{3}^{\prime}$-0-isopropylideneinosine (27). A mixture of 26 ($110 \mathrm{mg}, 130 \mu \mathrm{~mol}$), tetrazole (27 $\mathrm{mg}, 390 \mu \mathrm{~mol})$, PSS ($149 \mathrm{mg}, 390 \mu \mathrm{~mol}$), and TPSCI (79 mg , $260 \mu \mathrm{~mol}$) in pyridine (1.3 mL) was stirred at room temperature for 40 h . After ice-cooled $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added, the resulting solution was stirred at room temperature for 30 min , and then $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3} were added. The resulting mixture was partitioned, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ($\mathrm{SiO}_{2}, 90 \%$ EtOAc in hexane) to give 27 (99 mg, 72\%) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.47-6.87(\mathrm{~m}, 20 \mathrm{H}), 6.43,6.41$ (each d, each 1 H, J = 8.5, 8.5), 6.18 (d, $1 \mathrm{H}, \mathrm{J}=1.6$), 5.45 (dd, $1 \mathrm{H}, \mathrm{J}=1.6$, 6.2), 5.11 (dd, $1 \mathrm{H}, \mathrm{J}=3.5,6.2$), $5.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.5,6.3$), 4.73 (m, 1 H), 4.55 (m, 1 H), 4.42-4.27 (m, 5 H), 2.48 (m, 1 H), 2.33 (m, 1 H), $2.23(\mathrm{~m}, 1 \mathrm{H}$), 1.62, 1.50, 1.39, 1.21 (each s, each 3 H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,100 \mathrm{MHz}\right) \delta 155.2,147.8,147.2$ 140.0, 135.3, 135.3, 135.0, 135.0, 129.7, 129.4, 129.2, 129.1 126.1, 125.7, 125.7, 125.6, 121.8, 121.7, 118.1, 118.1, 114.7 113.2, 91.3, 85.5, 85.4, 83.6, 83.1, 81.8, 81.2, 66.2, 66.1, 66.0 65.9, 45.1, 32.2, 27.6, 27.2, 25.4, 25.2; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz , decoupled with ${ }^{1} \mathrm{H}$) $\delta 2.38$ (s), 50.9 (s); HRMS (FAB, positive) cal cd for $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{BrN}_{6} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}_{2}$ 1051.1689 (MH^{+}), found 1051.1690; UV (MeOH) $\lambda_{\text {max }} 249,230$, sh 265 nm . Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{BrN}_{6} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}_{2}$: C, 52.52; H, 4.70; Br, 7.60; $\mathrm{N}, 7.90 ; \mathrm{S}$, 6.10. Found C, $52.68 ; \mathrm{H}, 5.01 ; \mathrm{Br}, 7.42 ; \mathrm{N}, 7.83 ; \mathrm{S}, 5.71$.

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(phosphoryl)oxy]methyl]cyclopentyl]-5'-O-[(phenyl-thio)phosphoryl]-2, $\mathbf{3}^{\prime}$-0-isopropylideneinosine (15). A mixture of 27 ($105 \mathrm{mg}, 100 \mu \mathrm{~mol}$) and isoamyl nitrite ($202 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$ in pyridine- $\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}(2: 1: 1, \mathrm{v} / \mathrm{v}, 3.0 \mathrm{~mL})$ was stirred at room temperature for 8 h . After the reaction mixture was evaporated (at $<30^{\circ} \mathrm{C}$), the residue was dissolved in a mixture of $\mathrm{H}_{3} \mathrm{PO}_{2}(102 \mu \mathrm{~L}, 2.0 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(139 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$, and pyridine (2.5 mL), and the resulting solution was stirred at room temperature for 11 h . After the mixture was evaporated (at $<30^{\circ} \mathrm{C}$), the residue was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. After pyridine (5 mL) was added to the aqueous layer, the resulting solution was evaporated (at $<30^{\circ} \mathrm{C}$), and the residue was dissolved in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,10$ mL). The solution was applied to a C_{18} reversed phase column ($1.8 \times 15 \mathrm{~cm}$), and the column was developed using a linear gradient of $0-40 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,400$ mL). Appropriate fractions were evaporated, and excess TEAA was removed by C_{18} reversed phase column chromatography ($1.8 \times 13 \mathrm{~cm}$, el uted with 20% aqueous $\mathrm{CH}_{3} \mathrm{CN}$) to give 15 (89 $\mathrm{mg}, 88 \%$) as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500$ $\mathrm{MHz}) \delta 8.44$ (s, $1 \mathrm{H}, \mathrm{H}-2$), $7.24-7.09$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.35 (s, $1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.80 (d, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=6.4$), 5.28 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$, $\mathrm{J}=2.7,6.4), 5.07-5.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-2^{\prime \prime}\right), 4.79(\mathrm{~m}, 1 \mathrm{H}$, H-3"), 4.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.44 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 4.11 ($\mathrm{m}, 1 \mathrm{H}$, $\left.\mathrm{H}-5^{\prime} \mathrm{b}\right), 3.97$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), 3.19 ($\mathrm{q}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3$), 2.51 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 2.42 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}$), 2.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), $1.66,1.60,1.44,1.38$ (each s, each $3 \mathrm{H}, \mathrm{i}-\mathrm{PrMe}$), 1.27 (t, 18 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 159.0,150.5$ $150.2,133.6,133.6,132.5,132.5,131.6,130.6,130.0,126.8$, 117.6, 117.1, 94.6, 89.8, 89.7, 86.5, 86.2, 84.2, 84.0, 68.5, 68.3 64.8, 49.5, 47.2, 47.1, 35.7, 29.1, 28.6, 27.1, 26.9, 11.0; ${ }^{31}$ P NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 1.81$ (s), 17.9 (s); HRMS (FAB, negative) cal cd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BrN}_{4} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{~S} 807.0502$ [(M H) ${ }^{-}$], found 807.0516; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 246$, sh $259,284 \mathrm{~nm}$.

Synthesis of Cyclic 8-Bromo-IDP-Carbocyclic-Ribose Diacetonide (12). Typical Procedure A (Entry 4). A solution of 15 ($9.5 \mathrm{mg}, 9.4 \mu \mathrm{~mol}, 142 \mathrm{OD}_{260}$ units) in pyridine $(8.0 \mathrm{~mL})$ was added slowly over 15 h , using a syringe pump, to a mixture of $\mathrm{I}_{2}(50 \mathrm{mg}, 190 \mu \mathrm{~mol})$ and MS 3A (500 mg) in pyridine $(8.0 \mathrm{~mL})$ at room temperature in the dark. The MS

3 A was filtered off with Celite and washed with $\mathrm{H}_{2} \mathrm{O}$. To the combined filtrate and washing was added TEAA buffer (2 M, $\mathrm{pH} 7.0,1.0 \mathrm{~mL}$), and the resulting solution was evaporated. The residue was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated, and the residue was dissolved in 0.1 M TEAA buffer (5.0 mL), which was applied to a C_{18} reversed phase column ($1.1 \times 11 \mathrm{~cm}$). The column was developed using a linear gradient of $0-40 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,200 \mathrm{~mL}$). Appropriate fractions were evaporated under reduced pressure, and excess TEAA was removed by C_{18} reversed phase column chromatography ($1.1 \times 11 \mathrm{~cm}$, eluted with 20% aqueous $\mathrm{CH}_{3} \mathrm{CN}$) to give 12 ($8.5 \mathrm{mg}, 113 \mathrm{OD}_{260}$ units, quant) as a triethylammonium salt, the spectra data of which were in accord with those reported previously. ${ }^{6}$
Typical Procedure B (Entry 7). A solution of $\mathbf{1 5}$ (9.5 mg , $9.4 \mu \mathrm{~mol}, 142 \mathrm{OD}_{260}$ units) in NMP/HMPA (3:1, 8.0 mL) was added slowly over 15 h , using a syringe pump, to a mixture of $\mathrm{AgNO}_{3}(48 \mathrm{mg}, 280 \mu \mathrm{~mol}$) and molecular sieves 3A (500 mg) in the same solvent (8.0 mL) at room temperature in the dark. The mixture was cooled with an ice bath, into which $\mathrm{H}_{2} \mathrm{~S}$ for 10 min and then argon for 30 min were bubbled, and the resulting mixture was evaporated. The insoluble materials were removed by centrifugation, and the supernatant and washings (NMP, 2.0 mL) were combined and partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated, dissolved in water (100 mL), and applied to a DEAE-Sephadex A-25 column (HCO_{3}^{-}form, $1.8 \times 15 \mathrm{~cm}$). The column was devel oped using a linear gradient of $0-0.5 \mathrm{M}$ TEAB buffer (0.5 M, pH 8.6, 200 mL). Appropriate fractions were evaporated under reduced pressure, and excess TEAB was coevaporated with $\mathrm{H}_{2} \mathrm{O}$. The residue was dissol ved in $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$, and applied to a C_{18} reversed phase column ($1.1 \times 11 \mathrm{~cm}$). The column was developed using a linear gradient of 0-40\% $\mathrm{CH}_{3} \mathrm{CN}$ in TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,100 \mathrm{~mL}$). Appropriate fractions were evaporated under reduced pressure, and excess TEAA was removed by C_{18} reversed phase column chromatography ($1.1 \times 11 \mathrm{~cm}$, eluted with 20% aqueous $\mathrm{CH}_{3} \mathrm{CN}$) to give $\mathbf{1 2}\left(2.5 \mathrm{mg}, 33 \mathrm{OD}_{260}\right.$ units, 29\%) as a triethylammonium salt.
HPLC Analysis of the Reactions. To the reaction mixture ($30 \mu \mathrm{~L}$) was added TEAA buffer ($2 \mathrm{M}, \mathrm{pH} 7.0,10 \mu \mathrm{~L}$), and the resulting solution was evaporated. The residue was coevaporated with $\mathrm{H}_{2} \mathrm{O}$ and partitioned between $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3}. The aqueous layer was filtered with a syringe filter (cellulose acetate) and analyzed by HPLC [column YMS-ODS-M-80, $4.6 \times 150 \mathrm{~mm} ; 5-80 \%$ MeCN/0.1 M TEAA buffer (pH 7.0), $1.0 \mathrm{~mL} / \mathrm{min}, 30 \mathrm{~min} ; 254 \mathrm{~nm}$]. Compounds 11, 12, and $\mathbf{1 4}$ were eluted at 14.1, 14.7, and 15.8 min , respectively, which were identified with the authentic samples synthesized previously, 6,12 and a peak observed at 3.1 min was unknown nonnucleosidic compound due to its UV spectrum.

N-1-[(1R ,2S,3R,4R)-2,3-(I sopropylidenedioxy)-4-[(hy-droxymethyl)cyclopentyl]-5'0-(monomethoxytrityl)-2,3'-O-isopropylideneinosine (28). Compound 28 (240 mg , quant) was obtained from $\mathbf{2 0}(300 \mathrm{mg}, 320 \mu \mathrm{~mol})$ as described for the synthesis of $\mathbf{2 3}$ after purification by column chromatography ($\mathrm{SiO}_{2}, 10 \%$ acetone in EtOAc): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ MHz) $\delta 7.85$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 7.77 (s, $1 \mathrm{H}, \mathrm{H}-2$), $7.38-6.76$ (m, 14 $\mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}, \mathrm{J}=2.5\right), 5.23\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=\right.$ 2.5, 6.2), 5.04 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{J}=4.3,6.6$), 4.90 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$, J = 3.0, 6.2), 4.75 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=3.3,6.6$), 4.56 (ddd, 1 H , $\mathrm{H}-1^{\prime \prime}, \mathrm{J}=4.3,9.2,9.2$), 4.48 (ddd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{J}=3.0,4.4,5.9$), 3.83 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.35 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$, $\mathrm{J}=5.9,10.3$), $3.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{J}=4.4,10.3\right), 2.41(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{H}-4^{\prime \prime}$), 2.35 (m, $2 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$), 1.61, 1.55, 1.37, 1.30 (each s, each 3 H , i-PrMe); NOE ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) irradiated H-2, observed H-1" (5.9\%), H-2" (1.4\%); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 158.6,156.6,146.7,144.1,143.9,139.2,135.1,130.3,128.3$, 127.8, 127.0, 125.6, 114.5, 113.2, 113.0, 91.0, 86.7, 86.2, 84.6, 83.5, 82.5, 81.8, 66.1, 64.1, 63.9, 55.3, 46.8, 32.7, 30.9, 27.8, 27.2, 25.4, 25.3, 11.5; HRMS (FAB, positive) calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O} 9751.3342\left(\mathrm{MH}^{+}\right)$, found 751.3373; UV (MeOH) $\lambda_{\text {max }}$ 270 nm . Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}^{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.39 ; \mathrm{H}, 6.23$; N, 7.37. Found C, 66.60; H, 6.36; N, 7.29.

N-1-[(1R,2S,3R,4R)-2,3-(Isopropylidenedioxy)-4-[[(di-anilinophosphoryl)oxy]methyl]cyclopentyl]-5'-O-(mono-methoxytrityl)-2, $\mathbf{3}^{\prime}-0$-isopropylideneinosine (29). Compound 29 ($245 \mathrm{mg}, 85 \%$) was obtained from 28 ($220 \mathrm{mg}, 293$ $\mu \mathrm{mol}$) as described for the synthesis of $\mathbf{2 5}$ after purification by col umn chromatography ($\mathrm{SiO}_{2}, 10 \%$ acetone in EtOAc): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 7.87$ (s, 1 H), 7.71 (s, 1 H), $7.38-$ $6.75(\mathrm{~m}, 24 \mathrm{H}), 6.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.6), 5.91$, 5.77 (each d, each $1 \mathrm{H}, \mathrm{J}=7.9$), 5.22 (dd, $1 \mathrm{H}, \mathrm{J}=2.6,6.6$), 5.08 (dd, $1 \mathrm{H}, \mathrm{J}=$ 3.3, 6.6), 4.91-4.84 (m, 2 H), 4.49-4.31 (m, 4 H), 3.77 (s, 3 H), $3.33(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.62,1.54$, 1.37, 1.28 (each s, each 3 H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $158.4,156.4,146.6,146.5,143.8,143.6,139.5,139.1,134.8$, 130.2, 129.0, 129.0, 128.1, 128.1, 127.7, 127.6, 126.9, 126.8, $125.5,121.6,121.5,117.9,117.8,114.3,113.0,113.0,90.8,86.6$, 86.1, 84.5, 83.2, 81.9, 81.6,66.2, 66.1, 63.7, 55.2, 53.7, 45.5, 45.5, 32.1, 30.9, 29.2, 27.7, 27.2, 25.4, 25.2, 14.2; ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}, 125 MHz , decoupled with ${ }^{1} \mathrm{H}$) $\delta 2.68$ (s); HRMS (FAB, positive) cal cd for $\mathrm{C}_{54} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{P} 981.3951\left(\mathrm{MH}^{+}\right)$, found 981.3895; UV (MeOH) $\lambda_{\max } 271,236 \mathrm{~nm}$. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{P} \cdot 1 / 2 \mathrm{H}_{2}-$ O: C, 65.51; H, 5.90; N, 8.49. Found C, 65.49; H, 6.14; N, 8.14.

N-1-[(1R ,2S,3R ,4R)-2,3-(I sopropylidenedioxy)-4-[[(di-anilinophosphoryl)oxy]methyl]cyclopentyl]-2',3'0-isopropylideneinosine (30). Compound 30 ($118 \mathrm{mg}, 94 \%$) was obtained from 29 ($175 \mathrm{mg}, 178 \mu \mathrm{~mol}$) as described for the synthesis of $\mathbf{2 6}$ after purification by column chromatography $\left(\mathrm{SiO}_{2}, 4 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.01$ (s, 1 H) $, 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.18-6.87(\mathrm{~m}, 10 \mathrm{H}), 6.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 8.7), 6.28 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.7$), $5.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1$), 5.09-5.00 $(\mathrm{m}, 4 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.23(\mathrm{~m}, 2 \mathrm{H})$, 3.96 (dd, $1 \mathrm{H}, \mathrm{J}=1.4,12.5$), 3.80 (m, 1 H), 2.52 (m, 1 H), 2.39 $(\mathrm{m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.64,1.51,1.37,1.24$ (each s , each 3 $\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 156.4,147.1,146.2,139.9$, 139.6, 129.2, 129.2, 126.2, 121.9, 121.8, 118.2, 118.1, 118.1, $114.3,113.3,93.3,86.2,83.9,83.2,81.8,81.3,65.9,63.0,32.3$, 27.6, 27.5, 25.2; ${ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 2.81$ (s); HRMS (FAB, positive) calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{P}$ $709.2750\left(\mathrm{MH}^{+}\right)$, found 709.2743 ; UV (MeOH) $\lambda_{\max } 274,252$ nm.

N-1-[(1R,2S,3R ,4R)-2,3-(I sopropylidenedioxy)-4-[[(di-anilinophosphoryl)oxy]methyl]cyclopentyl]-5'-O-[bis-(phenylthio)phosphoryl]-2', 3'-0-isopropylideneinosine (31). Compound 31 ($107 \mathrm{mg}, 80 \%$) was obtained from 30 (98 $\mathrm{mg}, 138 \mu \mathrm{~mol}$) as described for the synthesis of 27 after purification by col umn chromatography ($\mathrm{SiO}_{2}, 90 \% \mathrm{EtOAc}$ in hexane): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.84$ (s, 1 $\mathrm{H}), 7.50-6.85(\mathrm{~m}, 20 \mathrm{H}), 6.20,6.06$ (each d, each $1 \mathrm{H}, \mathrm{J}=8.5$, 8.5), 6.05 (d, $1 \mathrm{H}, \mathrm{J}=2.6$), $5.07(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 2.6, 6.2), 4.82 (m, 1 H), 4.53(m, 1 H$), 4.45-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.37-$ $4.25(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 1.61$, 1.52, 1.36, 1.20 (each s, each 3 H); ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 125 \mathrm{MHz}$) $\delta 156.4,147.0,146.7,139.7,139.1,135.2,135.2,135.0,135.0$, $129.7,129.6,129.4,129.4,129.0,129.0,125.6,125.6,125.5$, $125.5,121.6,121.5,118.0,118.0,114.7,113.1,90.5,84.6,84.5$, 84.3, 83.2, 81.8, 80.9, 66.2, 65.5, 45.2, 45.2, 32.3, 27.6, 27.1, 25.2, 25.2; ${ }^{31 \mathrm{P}}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta$ 2.89 (s), 51.2 (s); HRMS (FAB, positive) calcd for $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{10^{-}}$ $\mathrm{P}_{2} \mathrm{~S}_{2} 973.2583(\mathrm{MH})^{+}$, found 973.2547 ; UV $(\mathrm{MeOH}) \lambda_{\text {max }} 267$, 255, 233 nm .

N-1-[(1R,2S,3R,4R)-2,3-(I sopropylidenedioxy)-4-[[(phos-phoryl)oxy]methyl]cyclopentyl]-5'-O-[(phenylthio)phos-phoryl]-2, $\mathbf{3}^{\prime}$-O-isopropylideneinosine (16). Using 31 (86 $\mathrm{mg}, 88 \mu \mathrm{~mol}$) as a substrate, the reaction and purification were carried out as described above for the synthesis of 15 to give a mixture of 16 and a byproduct. ${ }^{21}$ The mixture was dissolved in aqueous $\mathrm{NaHCO}_{3}(2 \%, 5 \mathrm{~mL})$, and the solution was stirred at $37{ }^{\circ} \mathrm{C}$ for 15 h . TEAA buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.0,5.0 \mathrm{~mL}$) was added, and the resulting solution was applied to a C_{18} reversed phase column ($1.1 \times 11 \mathrm{~cm}$). The col umn was developed using a linear gradient of $0-40 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAA buffer (0.1 M ,

[^7]$\mathrm{pH} 7.0,300 \mathrm{~mL}$). Appropriate fractions were evaporated under reduced pressure, and excess TEAA was removed by C_{18} reversed phase column chromatography ($1.1 \times 11 \mathrm{~cm}, 20 \%$ aqueous $\mathrm{CH}_{3} \mathrm{CN}$) to give pure $\mathbf{1 6}(53 \mathrm{mg}, 65 \%)$ as a triethylammonium salt: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, 8.20 (s, 1 H, H-2), 7.21-7.06 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.29 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{I}^{\prime}$, $\mathrm{J}=2.0$), 5.45 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=2.0,6.1$), 5.10 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$, $\mathrm{J}=2.0,6.1$), 5.04 (ddd, $1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$, J $=1.6,6.8,7.6$), 4.99(dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{J}=1.6,6.9$), 4.77 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=1.9,6.9$), 4.68 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.27 (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 4.12 ($\left.\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{\prime} 5^{\prime} \mathrm{b}\right), 3.98$ (m, $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 3.19\left(\mathrm{q}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3\right), 2.51(\mathrm{~m}, 1 \mathrm{H}$, H-4"), 2.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}$), 2.16 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), 1.64, 1.58, 1.42, 1.235 (each s, each 3 H , i-PrMe), 1.27 ($\mathrm{t}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}$, $\mathrm{J}=7.3$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 160.2,150.1,149.9,134.9$, 131.6, 130.2, 125.9, 117.5, 117.0, 93.3, 88.8, 86.6, 84.3, 76.2, 75.0, 68.2, 68.1, 64.9, 49.4, 47.1, 35.5, 29.2, 28.7, 27.0, 11.0; ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 1.17$ (s), 18.0 (s); HRMS (FAB, negative) cal cd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{~S} 729.1396$ [(M - H $)^{-}$], found 729.1417; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 244$, sh 270 nm .

Cyclic IDP-Carbocyclic-Ribose Diacetonide (32). Compound $16(4.4 \mathrm{mg}, 4.7 \mu \mathrm{~mol})$ was treated under the same conditons as in entry 4 in Table 1 to give 32 ($2.7 \mathrm{mg}, 81 \%$) after purification as described for the synthesis of $\mathbf{1 2}$ (procedure A): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 8.52$ (s, $1 \mathrm{H}, \mathrm{H}-8$), 8.16 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 6.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.72 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=6.0$), 5.47 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}=6.0$), 4.88 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}$), 4.74 ($\mathrm{m}, 2 \mathrm{H}$, H-2", H-3"), 4.56 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 4.14 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{a}$), 4.04 (m , $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime} \mathrm{b}\right), 3.19\left(\mathrm{q}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=\right.$ 7.3), $2.88-2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 2.62$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$), $1.64,1.58,1.45,1.37$ (each s, each $3 \mathrm{H}, \mathrm{i}-\mathrm{PrMe}$), 1.27 (t, 18 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 161.3,149.5$, 148.1, 145.0, 126.8, 117.2, 113.7, 94.2, 90.5, 89.0, 86.6, 85.6, 84.7, 71.2, 68.1, 67.9, 67.1, 49.4, 47.5, 29.7, 28.6, 27.0, 26.3, 22.8, 11.0; ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) δ -10.20 ($\mathrm{d}, \mathrm{J}=15.3$), -10.60 ($\mathrm{d}, \mathrm{J}=15.3$); HRMS (FAB , negative) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{P}_{2} 619.1206\left[(\mathrm{M}-\mathrm{H})^{-}\right.$], found 619.1201; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 250$, sh 273 nm .

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(bisphenylthiophosphoryl)oxy]methyl]cyclopentyl]-5'-0-(monomethoxytrityl)-2', 3'-0-isopropylideneinosine (33). Compound 33 ($165 \mathrm{mg}, 75 \%$) was obtained from 24 ($166 \mathrm{mg}, 200 \mu \mathrm{~mol}$) as described for the synthesis of 27 after purification by column chromatography $\left(\mathrm{SiO}_{2}, 60 \%\right.$ EtOAc in hexane): $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 500 \mathrm{MHz}\right) \delta 7.58-6.75(\mathrm{~m}, 24 \mathrm{H})$, 7.48 (s, 1 H), 6.18 (d, $1 \mathrm{H}, \mathrm{J}=2.2$), 5.47 (dd, $1 \mathrm{H}, \mathrm{J}=2.2,6.4$), 5.03 (dd, 1 H, J = 3.7, 6.4), 4.87 (dd, 1 H, J = 4.4, 6.7), 4.55 $(\mathrm{m}, 1 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $6.9,9.9$), 3.25 (dd, $1 \mathrm{H}, \mathrm{J}=4.9,9.9$), 2.47 ($\mathrm{m}, 1 \mathrm{H}$), 2.27-2.21 ($\mathrm{m}, 2 \mathrm{H}$) , 1.62, 1.54, 1.37, 1.27 (each s, each 3 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 158.5, 155.0, 147.7, 146.2, 144.3, 144.0, 137.8, 135.4, 135.4, 135.3, 130.3, 129.5, 129.4, 129.4, 129.0, $128.4,128.3,128.2,127.7,126.9,126.9,126.3,126.2,125.6$, $125.3,114.5,113.5,113.0,91.4,86.9,86.3,83.5,82.8,81.9,80.9$, 68.3, 68.3, 65.2, 63.9, 55.2, 45.3, 45.2, 32.8, 27.6, 27.2, 25.4, 25.3, 21.4; ${ }^{31}$ P NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta$ 50.0 (s); HRMS (FAB, positive) calcd for $\mathrm{C}_{54} \mathrm{H}_{54} \mathrm{BrN}_{4} \mathrm{NaO}_{10} \mathrm{PS}_{2}$ $1115.2100\left(\mathrm{M} \mathrm{Na}^{+}\right)$, found 1115.2070; UV (MeOH) $\lambda_{\max } 272,249$, sh 280 nm .
8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(bisphenylthiophosphoryl)oxy]methyl]cyclopentyl]-2',3'-O-isopropylideneinosine (34). Compound 34 (98 mg , 87\%) was obtained from 33 ($150 \mathrm{mg}, 137 \mu \mathrm{~mol}$) as described for the synthesis of $\mathbf{2 6}$ after purification by column chromatography $\left(\mathrm{SiO}_{2}, 20 \%\right.$ acetone in $\left.\mathrm{CHCl}_{3}\right)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.33(\mathrm{~m}, 10 \mathrm{H}), 6.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 5.0), 5.18 (dd, $1 \mathrm{H}, \mathrm{J}=5.0,6.1$), 5.04 (dd, $1 \mathrm{H}, \mathrm{J}=1.1,6.1$), 4.93 (dd, $1 \mathrm{H}, \mathrm{J}=4.9,6.4), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.55$ ($\mathrm{m}, 1 \mathrm{H}$), 4.47 (m, 1 H$), 4.40-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.77(\mathrm{~m}, 2$ H), 2.48-2.45 (m, 1 H), 2.27-2.21 (m, 2 H), 1.66, 1.52, 1.38, 1.27 (each s, each 3 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 154.7$, 147.2, 146.8, 135.3, 135.3, 129.5, 129.4, 126.2, 126.1, 126.1, $125.9,114.4,113.5,93.1,85.5,82.8,82.6,81.0,80.6,68.0,68.0$, 65.0, 62.9, 53.8, 44.9, 44.9, 32.8, 29.2, 27.5, 27.5, 25.3, 25.2; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 49.9$ (s);

HRMS (FAB, positive) calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{BrN}_{4} \mathrm{O}_{9} \mathrm{PS}_{2} 821.1080$ $\left(\mathrm{MH}^{+}\right)$, found 821.1064; UV (MeOH) $\lambda_{\text {max }} 250$, sh 274 nm .

8-Bromo-N-1-[(1R,2S,3R,4R)-2,3-(isopropylidenedioxy)-4-[[(bisphenylthiophosphoryl)oxy]methyl]cyclopentyl]-5'-O-(dianilinophosphoryl)-2', 3'-0-isopropylideneinosine (35). Compound 35 ($90 \mathrm{mg}, 80 \%$) was obtained from 34 ($88 \mathrm{mg}, 107 \mu \mathrm{~mol}$) as described for the synthesis of $\mathbf{2 5}$ after purification by column chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.59-$ 6.76 (m, 20 H), $6.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6), 5.29(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.6$, 5.3), 5.14 (dd, $1 \mathrm{H}, \mathrm{J}=3.4,5.3$), 4.93 (dd, $1 \mathrm{H}, \mathrm{J}=4.8,6.7$), $4.52(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.23$ (dd, $1 \mathrm{H}, \mathrm{J}=3.3,10.4), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.56$, 1.53, 1.29, 1.19 (each s, each 3 H); ${ }^{31} \mathrm{P}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 2.94$ (s), 50.1 (s); HRMS (FAB, positive) calcd for $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{BrN}_{6} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}_{2} 1051.1688\left(\mathrm{MH}^{+}\right)$, found 1051.1600; UV (MeOH) $\lambda_{\text {max }} 232$, sh $275,257 \mathrm{~nm}$.

8-Bromo-N-1-[(1R,2S,3R ,4R)-2,3-(isopropylidenedioxy)-4-[[(phenylthiophosphoryl)oxy]methyl]cyclopentyl]-5'-O-(phosphoryl)-2, $\mathbf{3}^{\prime}$-O-isopropylideneinosine (13). Compound $\mathbf{1 3}$ ($47 \mathrm{mg}, 75 \%$) was obtained from 35 ($90 \mathrm{mg}, 86 \mu \mathrm{~mol}$) as described for the synthesis of 16: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$) $\delta 8.39$ (s, $1 \mathrm{H}, \mathrm{H}-2$), $7.57-7.20$ (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.32$ (d, 1 H , $\left.\mathrm{H}-1^{\prime}, \mathrm{J}=1.7\right), 5.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=1.7,6.5\right), 5.31(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}, \mathrm{J}=4.0,6.5\right), 4.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 4.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right)$, $4.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 4.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.07-3.97(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right), 3.18$ ($\mathrm{q}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3$), $2.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right)$, 2.26-1.93 (m, $2 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$), 1.65, 1.54, 1.44, 1.29 (each s, each $3 \mathrm{H}, \mathrm{i}-\mathrm{PrMe}), 1.26\left(\mathrm{t}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3\right.$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{D}_{2} \mathrm{O}$, $125 \mathrm{MHz}) \delta 159.6,150.7,149.4,136.2,131.8,130.4,126.8$, 117.9, 116.7, 93.2, 88.9, 85.8, 83.8, 76.9, 74.6, 69.3, 67.2, 65.3, $63.5,49.3,46.6,45.4,35.2,32.9,30.8,29.1,28.7,27.1,10.9$; ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 0.62(\mathrm{~s}), 17.5$ (s); HRMS (FAB, negative) calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BrN}_{4} \mathrm{O}_{13} \mathrm{P}_{2} \mathrm{~S} 809.0481$ [(M - H $)^{-}$], found 809.0475; UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\text {max }} 249$, sh 282 nm .

Cyclic 8-Bromo-IDP-Carbocyclic-Ribose (6). A solution of $\mathbf{1 2}$ ($48 \mathrm{OD}_{254}$ units) in 60% aqueous $\mathrm{HCO}_{2} \mathrm{H}(1.0 \mathrm{~mL}$) was stirred at room temperature for 3.5 h . After the solvent was evaporated, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and applied to a DEAE-Sephadex A-25 column ($\mathrm{HCO}_{3}{ }^{-}$form, $1.1 \times 15 \mathrm{~cm}$). The column was developed using a linear gradient of $0-0.5 \mathrm{M}$ TEAB buffer ($\mathrm{pH} 8.6,200 \mathrm{~mL}$). Appropriate fractions were evaporated, and excess TEAB was coevaporated with water. The residue was freeze-dried to give 6 (18 OD_{254} units, 37%) as a triethylammonium salt: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right.$, 500 MHz) $\delta 9.00$ (s, $1 \mathrm{H}, \mathrm{H}-2$), 6.17 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathbf{1}^{\prime}, \mathrm{J}=6.6$), 5.24 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 5.17 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$), 4.65 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), 4.60 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $4.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.26-4.07$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$, $\left.\mathrm{H}-5^{\prime}, \mathrm{H}-5^{\prime \prime}\right), 3.18$ ($\mathrm{q}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3$), 2.91 ($\mathrm{m}, 1 \mathrm{H}$, H-6"a), 2.46 (m, 1 H, H-4"), 2.20 (m, 1 H, H-6"b), 1.27 (t, 18 $\mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{~J}=7.3$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 160.0$, 151.4, 151.2, 130.8, 126.6, 93.6, 87.9, 87.8, 81.3, 75.7, 75.2, 73.6, 67.7, 61.7, 49.4, 44.9, 28.4, 11.0; ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-8.94(\mathrm{~d}, \mathrm{~J}=12.0),-10.28(\mathrm{~d}, \mathrm{~J}=12.0)$; HRMS (FAB, negative) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrN}_{4} \mathrm{O}_{13} \mathrm{P}_{2} 616.9686$ [(M - H) ${ }^{-}$], found 616.9716; UV (MeOH) $\lambda_{\max } 256$, sh 278 nm .

Acknowledgment. This investigation was supported in part by a grant from the Ministry of Education, Science, Sports, and Culture of J apan. We are grateful to Prof. Barry V. L. Potter (University of Bath) for his helpful discussion.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR spectral charts of $\mathbf{6}, \mathbf{1 3}, \mathbf{1 5}, \mathbf{1 6}, \mathbf{2 3}, \mathbf{2 4}, \mathbf{2 6}, \mathbf{3 0}, \mathbf{3 1}, \mathbf{3 2}, \mathbf{3 3}, \mathbf{3 4}$, and 35 and HPLC charts of $\mathbf{3}, \mathbf{6}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}, \mathbf{1 5}, \mathbf{1 6}$, and $\mathbf{3 2}$. This material is available free of charge via the Internet at http://pubs.acs.org.

[^8]
[^0]: * To whom correspondence should be addressed. Phone: +81-11 706-3229. Fax: +81-11-706-4980. E-mail: shu@pharm.hokudai.ac.jp.
 (1) This paper constitutes part 195 of Nucleosides and Nucleotides. Part 194: Abe, H.; Shuto, S.; Matsuda, A. Tetrahedron Lett. 2000, 41, 2391-2394.
 (2) Clapper, D. L.; Walseth, T. F.; Dargie, P. J .; Lee, H. C. J . Biol. Chem. 1987, 262, 9561-9568.
 (3) (a) Galione, A. Science 1993, 259, 325-326. (b) Lee, H. C.; Galione A.; Walseth, T. F. Vitam. Horm. (San Diego) 1994, 48, 199257. (c) Dousa, T. P.; Chini, E. N.; Beers, K. W. Am. J. Physiol. 1996, 271, C1007-C1024. (d) Lee H. C. Physiol. Rev. 1997, 77, 1133-1164. (e) Lee, H. C. Cell Biochem. Biophys. 1998, 28, 1-17. (f) Galione, A.; Cui, Y.; Empson, R.; Iino, S.; Wilson, H.; Terrar, D. Cell Biochem. Biophys. 1998, 28, 19-30. (g) Guse, A. H. Cell Signalling 1999, 11, 309-316.

[^1]: (4) (a) Walseth, T. F.; Lee, H. C. Biochim. Biophys. Acta 1993, 1178, 235-242. (b) Lee, H. C.; Aarhus, R.; Walseth, T. F. Science 1993, 261, 352-355. (c) Graeff, R.'M.; Walseth, T. J .; Fryxell, K.; Branton, W. D.; Lee, H. C. J. Biol. Chem. 1994, 269, 30260-30267. (d) Zhang, F.-J .; Sih, C. J. Bioorg. Med. Chem. Lett. 1995, 5, 1701-1706. (e) Zhang, F.-J .; Gu, Q.-M.; J ing, P. C.; Sih, C. J. Bioorg. Med. Chem. Lett. 1995, 5, 2267-2272. (f) Zhang, F.-J .; Yamada, S.; Gu, Q.-M.; Sih, C. J . Bioorg. Med. Chem. Lett. 1996, 6, 1203-1208. (g) Zhang, F.-J .; Sih, C. J. Tetrahedron Lett. 1995, 63, 9289-9292. (h) Zhang, F.-J.; Sih, C. J . Bioorg. Med. Chem. Lett. 1996, 6, 2311-2316. (i) Ashamu, G. A.; Galione, A.; Potter, B. V. L. J. Chem. Soc., Chem. Commun. 1995, 1359-1356. (j) Bailey, B. C.; Fortt, S. M.; Summerhill, R. J.; Galione, A.; Potter, B. V. L. FEBS Lett. 1996, 379, 227-230. (k) Bailey, V. C.; Sethi, J. K.; F ortt, S. M.; Galione, A.; Potter, B. V. L. Chem. Biol. 1997, 4, 51-60. (I) Bailey, V. C.; Sethi, J. K.; Galione, A.; Potter, B. V. L. J . Chem. Soc., Chem. Commun. 1997, 695-696. (m) Sethi, J. K.; Empson, R. M.; Bailey, V. C.; Potter, B. V. L. Galione, A. J . Biol. Chem. 1997, 272, 16358-16363. (n) Ashamu, G. A.; Sethi, J . K.; Galione, A.; Potter, B. V. L. Biochemistry 1997, 36, 9509-9517. (o) Zhang, F.-J .; Gu, Q.M.; Sih, C. J. Bioorg. Med. Chem. 1999, 7, 653-664. (p) Wong, L.; Aarhus, R.; Lee, H. C.; Walseth, T. F. Biochim. Biophys. Acta 1999, 1472, 555-564.

[^2]: (5) Lee, H. C.; Aarhus, R. Biochim. Biophys. Acta 1993, 1164, 68-

[^3]: (12) Shuto, S.; Shirato, M.; Sumita, Y.; Ueno, Y.; Matsuda, A. Tetrahedron Lett. 1998, 39, 7341-7344.

[^4]: (13) The generation of a highly active metaphosphate intermediate has been suggested when phenylthiophosphates are treated by a promoter such as Ag^{+}: see ref 9c.

[^5]: (14) De Napoli, L.; Messere, A.; Montesrchio, D.; Piccialli, G.; Varra, M. J . Chem. Soc.,' Perkin Trans. 1 1997, 2079-2082: N-1-dinitrophenylinosine derivatives were obtained as a mixture of two rotamers at the N-1-position.

[^6]: (15) The carbocyclic amine $\mathbf{1 8}$ was recovered in 87% yield after the reaction and was used repeatedly.
 (16) Ivanovics, G. A.; Rousseau, R. J.; Kawana, M.; Srivastava, P. C.; Robins, R. K. J. Org. Chem. 1974, 39, 3651-3654.
 (17) Sasse, K. Methoden der Organiches Chemie; 1971; Vol. 12, No. 2, pp 444-450.
 (18) Smrt, J. Tetrahedron Lett. 1973, 47, 4727-4728.
 (19) Sekine, M.; Hamaoki, K.; Hata, T. Bull. Chem. Soc. J pn. 1981, 54, 3815-3827.
 (20) Hata, T.; Kamimura, T.; Urakami, K.; K ohno, K.; Sekine, M.; Kumagai, I.; Shinozaki, K.; Miura, K. Chem. Lett. 1987, 117-120.

[^7]: (21) The HPLC analysis showed it included a byproduct, which might be an acetylated product of $\mathbf{1 3}$ at the 5^{\prime}-phospate moiety, since treatment of the mixture with aqueous NaHCO_{3} gave the desired 5'phosphate $\mathbf{1 3}$ as a sole product.

[^8]: J 00000877

